Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 914: 169857, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190912

RESUMEN

Flue gases are the gases which are produced from industries related to chemical manufacturing, petrol refineries, power plants and ore processing plants. Along with other pollutants, sulfur present in the flue gas is detrimental to the environment. Therefore, environmentalists are concerned about its removal and recovery of resources from flue gases due to its activation ability in the atmosphere to transform into toxic substances. This review is aimed at a critical assessment of the techniques developed for resource recovery from flue gases. The manuscript discusses various bioreactors used in resource recovery such as hollow fibre membrane reactor, rotating biological contractor, sequential batch reactor, fluidized bed reactor, entrapped cell bioreactor and hybrid reactors. In conclusion, this manuscript provides a comprehensive analysis of the potential of thermotolerant and thermophilic microbes in sulfur removal. Additionally, it evaluates the efficacy of a multi-enzyme engineered bioreactor in this process. Furthermore, the study introduces a groundbreaking sustainable model for elemental sulfur recovery, offering promising prospects for environmentally-friendly and economically viable sulfur removal techniques in various industrial applications.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Gases/química , Azufre/química , Reactores Biológicos
2.
Sci Total Environ ; 883: 163656, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37088382

RESUMEN

Carbon capture storage and utilization (CCSU) has the potential to become a key tool to mitigate climate change, thus, aiding in achieving the objectives of the 2015 Paris Agreement. Even though the relevant remediation technology has achieved technical maturity to a certain extent, implementation of CCSU on a larger scale is currently limited because of non-technical parameters that include cost, legalization, lack of storage reservoir, and market mechanism to penalize CO2 emitter. Among these, cost emerges as the primary barrier to the dissemination of CCSU. Hence, necessary policy frameworks and incentives must be provided by governing agencies to enable faster dissemination of carbon capture and utilization (CCU) and carbon capture and storage (CCS) globally. Meanwhile, strict implementation of a carbon tax across nations and market demand for products generated using captured CO2 can aid in the fast adoption of CCU and CCS. This review assessed the economic feasibility and sustainability of CCS and CCU technologies to identify the barriers to commercializing these technologies.

3.
Bioresour Technol ; 376: 128903, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36931447

RESUMEN

Environmental contamination is considered a major issue with the growing urbanization and industrialization. In this context, the scientific society is engaged in searching for a sustainable, safe, and eco-friendly solution. Sustainable materials such as biochar play an important role in environmental contamination. It has some specific properties such as micropores which increase the surface area to bind the pollutants. This review endeavors to analyze the potential of fruit wastes especially tropical fruit tree residues as potential candidates for producing highly efficient biochar materials. The review discusses various aspects of biochar production viz. pyrolysis, torrefaction, hydrothermal carbonization, and gasification. In addition, it discusses biochar use as an adsorbent, wastewater treatment, catalyst, energy storage, carbon sequestration and animal feed. The review put forward a critical discussion about key aspects of applying biochar to the environment.


Asunto(s)
Frutas , Árboles , Animales , Carbón Orgánico/química , Suelo/química
4.
Chemosphere ; 291(Pt 1): 132753, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34780737

RESUMEN

Wastewater (WW) contains nitrogen (N) and phosphorus (P), where N oxidizes to nitrate followed by denitrification to release N2 and P is accumulated in sludge. Higher concentrations of N and P leads to eutrophication and algal blooming, thereby threatening the aquatic life systems. Such nutrients could be potentially recovered avoiding the fertilizer requirements. Distinct nutrient recovery systems have been demonstrated including chemical precipitation, ion-exchange, adsorption, bio-electrochemical systems, and biological assimilation at various scales of volumes. This study focusses on the nutrient recovery possibility from wastewater in India. The resource estimation analysis indicates that at 80% recovery, 1 million liters per day (MLD) of sewage can generate 17.3-kg of struvite using chemical precipitation. When compared with traditional fertilizers, nutrient recovery from sewage has the potential to avoid 0.38-Mt/a in imports. Replacing conventional fertilizer with struvite recovered from WW avoids 663.2 kg CO2eq/ha in emissions (53%). Prevailing WW treatment looks at maintaining the discharging standards while recovering nutrients is an advanced option for a self-reliant and sustainable circular economy. However, more detailed assessments are necessary from techno-economic and environmental perspective in realizing these technologies at an industrial scale.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Nutrientes , Fósforo , Aguas del Alcantarillado , Estruvita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...